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N O N L I N E A R  T R I P L E - W A V E  I N T E R A C T I O N S  

IN S A T U R A T E D  P O R O U S  M E D I A  

A. M. Maks imov ,  E. V.  Radkevich,  I. Ya. Edelman UDC 519.6 + 551.463 

Present-day geophysical problems involving both analysis of the interaction between geophysical 
fields [1] and technological matters concerning the seismoacoustic effect on hydrocarbon deposits [2, 3] 
as well as the development of a synergetic concept of a geological medium [4] necessitate theoretical 
studies of the mechanisms of nonlinear wave propagation and interaction in porous media. The commonly 
accepted methodology of nonlinear wave theory [5] assumes the transformation of the equations of mechanics 
conservation laws corresponding to a given model into nonlinear evolution equations, which appear as 
conditions of asymptotic solvability and describe the propagation of envelope waves over long time periods. 

The goal of papers [6-9] was to derive nonlinear evolution equations for various models of porous media 
and to analyze the resonance effects described by the solutions of these equations. In [10, 11] a generalization 
of the classical Fraenkel-Biot-Nikolaevskii model [12, 13], which takes into account the dispersion factor 
(viscous shear stresses in the liquid phase), was proposed and a mathematical foundation of the asymptotic 
transformation to nonlinear evolution equations was given for constructing one-phase solutions. 

The present paper constructs a many-phase asymptotic solution determined by a series of elastic waves 
and considers a triple-wave resonance effect. Solution of this problem with allowance for to the dispersion 
properties of the medium in a weak-nonlinearity approximation assumes determination of the conditions for 
resonance interaction and analysis of the mechanisms of energy redistribution in the system of resonance 
triads [14, 15]. It is demonstrated that modulated-wave propagation can be described by the Korteweg-de 
Vries-Burgers equation. For resonance triads, the Maenly-Rough law of energy conservation holds. 

1. Def in i t i on  of  P o r o u s - M e d i u m  Mode l .  Consider a viscoelastically deformable porous medium 
consisting of an elastic frame, a surface-bound frame of viscous liquid, and a viscous fluid (incompressible 
liquid or ideal gas) phase. 

Note that in this case, unlike the conventional consideration of a pore fluid with Pij = -pal  j, the shear 
stresses in the fluid are taken into account: 

ion:, o.:j 2 ] 
Pij = -peSij -{- uf [ Oxj + Oxi 3 0 x  k ~ij 

[Po is the tension tensor in the fluid phase; p is the pressure; v is the rate vector; u is the viscosity; index f 
can take values of l (liquid) or g (gas), corresponding to porous medium saturation by an incompressible 
liquid or an ideal gas]. 

The porous-medium frame and bound liquid form an effective viscoelastic solid phase that displays the 
elastic characteristics of the frame and the viscous characteristics of the liquid. In this case, the frame and 
bound liquid have the same velocity, temperature, and pressure. Allowing for the viscoelastic properties we 
derive a rheological relation for the solid phase: 

{ Ov,i Ov,j 2 0v.k ] 
crij = KekkSij + 2G(eij  - ekkSij/3) + 13sKpSij - ~sKTsSi j  + amua [-~zj + Ox~ 3 OZ k 5ijJ, 
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where crij is the tensor of effective stresses; e 0 is the deformat ion tensor; K is the  module of volumetric 
elasticity; G is the shear modulus ; /3  is the compressibil i ty coefficient; ~ is the expansion coefficient; m is the 
porosity; a is the volumetr ic  fraction of the bound liquid; T is the temperature ;  subscr ipt  s is the solid phase 
and a is the bound liquid. 

Let us now formulate  a sys tem of determining equat ions in dimensionless form. Let us introduce the 
dimensionless variables and the parameters :  

' z / z o ,  t' t / to ,  u' u / z o ,  

/3' = ~Ko,  ~' = c20o, K'  = K / K o ,  

~'= ~Ootol(:o~gpo), c ' =  COol~o, 

SO = ~)OtO, 

P' = P/Po, P'  = P / K o ,  a' = a / K o ,  T '  = T/Oo, 

G ' = G / K o ,  v ' = v / v o ,  E ' =  E / v  2, u ' = u / ( K o t o ) ,  

= ROol@ x' = xOotol(~g:o), ~:' = ~:so ,  ~ '  = , - t o  

to = poa~/ul, vo = (Ko/po):/2].  

Here ~e is the permeabil i ty;  p is the density; u is the shear vector; E is the internal energy; A is the heat 
conduct ivi ty  coefficient; C is the  heat capacity;  R is the universal gas constant;  X is the interphase heat 
exchange coefficient; k is the  wave vector; w is the frequency. 

The  values of the  dimensionless parameters  can be  es t imated  using characterist ic  values of rock 
constants [13]: 

K0 -~ 108-109 Pa, 00 -,~ 102-103 K, p0 "" 10 a kg /m  a,fl  "~ 10-1~ .9  Pa  -1,  ~o ,-~ 10-6-10 -a K -1, 

C, - ,  103 J / ( k g -  K), A -~ 10 ~ W / ( m -  K), u,-~ 10-s -10  -3 P a . s e c ,  ~e-,- 10 - : s -10  -12 m 2. 

For these parameters  we have 

to -,- 10-9-10 .6  sec, v0 -'- 103 m/sec,  x0 "-~ 10-6-10 .3  m, u' --- 10-8-10 -2,  

/3'-,, 10-2-100 , T',-~ 10-3-10 ~ C' ,-, 10 ~ A',,- 10-7-10 .4  . 

The small dimensionless parameter  obtained by analyzing the dimensions 

: = (u)) I/2 = (ul/(ICoto)) I/2 -- ui/(Koaooe) I/2 

is a combinat ion of the average fluid viscosity, elasticity modulus,  density, and medium permeabili ty and 
determines the scale of the manifestat ion of the dispersion properties.  

Below, the primes will be omit ted.  Using the above est imates of dimensionless parameters  we assume 
u = :2~ and A = e2A. Omit t ing  the index --~, we write a set of equations of mass, energy, and momentum 
conservation ( i , j  = 1,2, 3): 

o ( ( :  - ~)mp:)/ot + v~((: - ~),,,p:~:) = o, 

o ( ~ . ~ p ~  + ( :  - m)p~)lOt + % ( ( ~ m : ~  + (1 - m ) : . ) . . )  = o, 

( :  - ~)mp:[o/o~ + < . : ,  v ~  > 1 . : ~  - ( :  - ~)~oP,  jlO~j + m 2 ( :  - ~ ) 2 ( . : ,  _ ~ . , )  = o,  

( ~ p ~  + (1 - ,~)p,)[o/ot  + < , . . %  > ] , . ~  - 0 ~ o / 0 s j  

- ( 1  - (1 - a ) m ) O P o / O x  i - m2(1 - a )2(v/ i  - v,i) = 0, Oui/Ot - v,i = O, 

Oaij/Ot = K6ijOekk/Ot + 2GO(eij - ekkSi j /3) /Ot  + ~sSij g O p / O t  (1.1) 

- ~ s S O K O T s / O t  + :2arnuaO[OqVsi/Oxj -I- OVsj/Osi - (2/3)(Ovsk/Oxk)Si j l /Ot ,  

Oeij/Ot -- (OVsi/Oxj + OVsj/Oxi)/2 = O, 

rn(1 - - a ) p f [ O / O t +  < vl ,  V ~ > ] E l  = m(1 - a ) P o O v i i / O x  j 

+rn2(1 - c~) 2 [ v I - v~ [2 _ x ( T  I _ T~) + :2V~(m(l - a ) A I V . ) T I ,  

(I - m ) p ~ [ O / O t  + < v , , V ~  >]Es + a m p ~ [ O / O t  + < v~,V~ >]E~ 

= [aij + (1 - (1 - a)m)Pij]Ov~i/Os i + x ( T / -  Ts) + :2V~((1 - re)As + arnA~)V~T,.  
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The rheological and thermodynamic relations are of the form 

PI = P/o(1 +/31(p - Po) - ~l(Tt - T/o)), 

pa = p/o(1 - fla(a~k/3 - ~ro) - ~a(Ts - Tso)), 

Ps = ps0(1 -/3~(~r~k/3 - g0) - ~ ( T s  - Tso)), 

p, = p/(nT,), 

Vf = ( V f l , V f 2 ,  Vf3) ,  

Vs = (Vsl ,Vs2,  Vs3), 

Pij = -P~q + e2uf[OvyilOxj + O v i j l O x i -  (213)(OvfklOxk)~ii], (1.2) 

ptdEl = ptCtdTt + (plpl)dpl - qotTtdp, E 9 = CgTg, 

psdE~ = p~C~dT~ + cr~jdeij + qo~T~&r~j3, triO. = crij/(1 - (1 - c~)m) + Pij, 

padE~ = p~C~dTs - cr~j(3po~)dp~ + qo~Tsdcr~kl3 

(otis j is the tensor of the true stresses in the solid phase). 
System (1.1), (1.2) is a mainly hyperbolic and closed set of equations for the unknown tensor functions 

crij and e/j, vector functions u, vs, and vi ,  and scalar functions m, p, Ts, and 7'I. 
Further, we restrict ourselves to considering Cauchy's problem with the following initial data 

o o v~ It=0 = rn~ ~i I,=0= ~i, ~ i  I,=0= ,~i, ,~i I,=0= m 

p I,:0= pO TI I,=0= T~, Ts I,:0= T~ eij I,:0:  [Ou~ + O~~ 

cri i It=0 = Kekk6ij It=0 +2G(eij - (ll3)ekk~ij) [t=o +flsKp~ (1.3) 

2. C o n s t r u c t i o n  of  a M a n y - P h a s e  A s y m p t o t i c  Solu t ion .  
T h e o r e m  2.1. The asymptotic solution for mod O(e) of Cauchy's problem for system (1.1), (1.2) with 

the initial data 
N 1 

U It=0 = Ub It=0 + ~  Hi U; (Sio(x)/e,x) (2.1) 
i=1 

is of the form 

N 1 

U = Ub(x, t) + ~ ~_, H i U i (Si/e,  z,  t), (2.2) 
i = l  

where U is the vector function of the values sought after:. 

U( r , x , t )  = (m, vli,  v~i,p, crij,eij, T f ,Ts ,  ui), i , j  = 1, 2, 3; 

1 

Ub(x,t) is the slow background (the average of the g solution of the initial set of equations); U~(ri, x) are 
scalar, real, C ~~ x-finite, 27r-periodic over ri = Si /e  functions; the phases Si(x, t) are the soIuti~ ns of Cauchy's 
problem for the Hamiltonian-Jacobi equation 

OSi/Ot + ~i(x, t, v~S,)  = o, S, It=0= S,0(x). (2.3) 

The wi frequencies obey the dispersion relation 

Det A(Sit, Si~, x, t) = 0; (2.4) 

1 

Hi(z ,  t) are zero-vectors corresponding to frequencies wi( x, t, k); ui( ri, x, t) are any 2~r-periodic in ri functions 
with a zero average; A is the symbol of the linearized operator A( t , x ,O/Ot ,V~)  of the initial system of Ub 
background equations. 

Note that the mainly hyperbolic system of equations and the form of the asymptotic solution chosen 
for this system predetermine the maximum number of the real roots of the dispersion equations. 

The mod O(c 2) asymptotics is constructed on an assumption similar to the condition for the minor 
denominators of the Kolmogorov-Arnold-Mozer (KAM) theory [15, 16]. 
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Condition A (KAM type). The positive constants c and # are such that for all integers n j , j  = 1 , . . . ,  N 
the following relation holds: 

[Det A(t ,~,-co,  k)l/> c nj , J ( n l , . . . , n ~ ) [  # 1. 
1= 

N N 
In this case k = ~ njk(J); the nonzero vectors k (i) E R a, co = ~ njcoi(k(i) ). 

j = l  j= l  
When this condition is satisfied, no wave resonance interaction occurs. 
T h e o r e m  2.2. Let condition A be satisfied. Then the asymptotic solution for mod 0(r  2) of Cauchy's 

problem (1.1)-(2.1) is of the form 

N 1 2 

u = ub(~, t) + ~ ~ H i U / (n, x, t) + ~2(U (T, ~, t) + Q(~, t, ~)), 
/=1 

1 

where the vector r = (T1, . . . ,  TN). The real scalar 27r-periodic U i (ri, x, t) functions with Ti zero averages are 
the solution of Cauchy's problem for the Korteweg-de Vries-Burgers equation 

1 . I . 1 1 . 1 r 1 . 1 1 

d U i /dtA + a'lO 2 U i /aT? + a~ U i O U i /Ovi + a' a U i +r a U i /Ov? + a' 5 U i 0 2 U  i /or?  

�9 1 .  1 . 1 .  1 1 1 I 1 

= V / U i (2 .5 )  + a;(U')20 u / lOT~ + a'~(U') z + a~(O U / lOT~) 2 + a~O V //OTi O, ~ = o =  0- 

2 
Here U (r, x, t) is a C ~176 function over the set of variables that is 27r-periodic with a T-zero average; the d/dtA 
operator is a total derivative along the characteristics satisfying Eq. (2.3); Q is the infinitely different/able 

i bounded function; the coefficients aj (j = 1-9) are determined from the construction. 
3. R e s o n a n c e  Tr iads .  Equation (2.5) can be used to describe the propagation of modulated waves 

that do not take part in nonlinear interaction. However, a number of experimental facts are known [2, 3, 17] 
that attest to processes of new-wave generation due to the nonlinear interaction of elastic longitudinal and 
transverse waves in rocks. The problem of the theoretical study of this effect can be solved using conventional 
methods of nonlinear physics that consider schemes of triple-wave interactions [5, 14, 15, 18]. 

It is obvious that the following are necessary conditions for resonance wave interaction: 

W(1) ..1_ co(2) = co(a), k (1) + k (2) = k (3) (3.1) 

[co(i)= w(0(k(i)) and k(0 are the frequency and wave vector of the triplet of interacting waves, respectively]. 
A triple-wave resonance interaction in the model of a porous medium is described in terms of the 

generalized system of Korteweg-de Vries-Burgers equations: 

1 1 1 
d U i i 0~2 U I  1 1 
dtAi + al--~-v2 H-a~ U i O U i i Ui - -  - -~-r  + a a 

1 1 1 1 1 

+~ [ai4---~v3 -t-a'5(U')2 +a~ \ +a'7 Ui i , ,~ i ,20U W i aT--- T + a s (~  ) ~ + 9--0-~-r j + = 0, (3.2) 

where 

2~ I 

0 

1 

x, t) U 3 (T + ~, x, t)d(; 

(9 2Y I 1 
W 2 = " / 2 / ( 2 7 r ) ~  J U 1 ( ~ , x , t )  g 3 ( T  + ~ , x , t ) d ~ ;  

0 
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2~ 1 1 
w 3 =  ~ f v 1 2 ( r -  

o 

In this case, the constants 7i are determined from the construction and depend on the medium's parameters 
and the equilibrium background state, frequencies, and the wave vectors of the resonance triad. 

For system of Eqs. (3.2) the laws of energy conservation (analogs of the Maenly-Rough relations [14, 15]) 
hold: 

d 7i d d d / d 
--dtAjgJ+--d-~A3 g 3 3 ' 3  = 0 ,  j =  1,2, --gldtA1 + d--'~A2 g2 +(71 +72)__73 d---~A3A3 s = 0, (3.3) 

where gj(t) is the energy of a wave with phase Sj averaged over fast oscillations 

1. { ~ (  )2 t / j 2 / [  i ] (~T/)2  
1 ~]i dr  + I al I +e(a  j - -  2a{) U j drdtAj zj=  

0 0 0 

tAj 27r . 1 1 2 

0 0 

Conservation laws (3.3) allow the wave interaction character to be analyzed from the standpoint of 
1 1 

energy redistribution [15, 18] by examining, for simplicity, the x-independent Cauchy data U i l t = 0 -  U~(r). 
1 1 

Then, due to the solution's uniqueness, UJ(t, r) are independent of the slow variable x, i.e., dUJ(t, r)/dtAj = 
1 

dUJ(t, r)/dt,  j =  1 ,2 ,3 .  
In this case the following variants are possible: 
1.71,72,73 > 0  or 71,72,73 < 0 .  Hence 

gl(t) El(O) 71g = _ _ _  = - - -  3(t), E2(t) E2(O) ~/2E3(t), 
73 73 

Here a portion of the energy of two initial waves is 

Ei(t) + 71 + 7_______22 ga(t) = gj(O), j = 1, 2. 
73 

"pumped" into the forming third wave. Since 
(71 + "/2 )/73 > 0, the total system energy remains constant, so that the amplitudes of the initial waves decrease 
with increasing amplitudes of the resulting waves. 

2. 71 > 0,72,73 < 0 or 71 < 0,72,73 > 0. Hence, 

")'1 ~2(0) -- ~1"]'2 3(t), ~j(t) + 71__g3(t)73+ ~2 = gj(O), j = 1, 2. 6(t)  = E,(0)+  E3(t), &(t) = IE 

In this case, the forming third wave "takes" the energy portion (72/73) from the second one and "gives" 
the portion (71/73) to the first wave. The total energy of the system remains constant [(71 + 72)/"/3 > 0]. 

Similarly, with 72 > 0, 71,73 < 0 or 72 < 0, 71,73 > 0 the resulting wave "takes" the energy portion 
(71/73) from the first wave, and "gives" the portion (72/73) to the second one. 

3. As noted above, the energy portion from the initial waves is "pumped" via the new wave to another 
initial wave. However, since the total system energy is not preserved [(71 + 72)/73 < 0], there is a potential 
for unlimited growth of the amplitude of interacting waves, which is sure to cause explosive instability in a 
finite time. 

4. Triple-wave resonance fails. In this case, 73 > 0, 71,72 < 0, or 73 < 0, 7a, 72 > 0. Hence, 

171 I E , I , g1(t) = ~1(0) + ~ 3(t), g2(t) = g2(0) + [---~3[ga(t), 

i.e., ga(t) - 0, and in a first approximation triple-wave resonance is impossible. 

105 



C o m m e n t .  Analyzing triple-wave interaction in terms of energy redistribution we formulated the 
necessary conditions for realizing various interaction regimes. The question of sufficient conditions calls for 
construction and study of the solution of Cauchy's problem for system (3.2), which is beyond the scope of our 
paper. 

4. T h e  R e s o n a n c e  I n t e r a c t i o n  of  L o n g i t u d i n a l  and  T r a n s v e r s e  Waves .  In order to specify the 
conditions for resonance interaction (3.1) let us consider the frequencies of longitudinal and transverse waves. 
Performing dispersion analysis of the model, we deduce explicit expressions for the frequencies of longitudinal 
and transverse waves [10, 11]. We restrict ourselves to the case of zero background velocities of the solid and 

fluid phases (v(~) = v~ ) = 0, i =  1, 2, 3). 
Dispersion relation (2.4) is of the form 

Det A(t ,  x , - w ,  k) = (1 - a)Sm4p4792p~wlT/(3(1 - (1 - a)rn)) 

for the liquid-saturated porous medium, and 

Det A ( t , x , - ~ , k )  (1 5 4 2 2 17 2 = - a )  m T'47'~pgw / ( 3 R T ~ ( 1 - ( 1 - a ) m ) )  

for the gas-saturated porous one. 
The frequencies of the first and second types of longitudinal waves (forward and backward) are 

determined by a fourth-degree polynomial T'4: 

"~4 = F0 w4 -- F1 w2 + F2. 

In this case the coefficient F0 is a constant that is independent of the wave vector and is determined by the 
equilibrium background and the medium's parameters. Coefficients F1 and F2 are written as 

El = cxlkl 2 + ~ x f f ) k i k j ,  F2 = 11r162 + ~}~  

where ki are the coordinates of the wave vector k; the constants cl, ~el and c2, ~e2 are also determined by the 
equilibrium background and the medium's parameters. Thus, the frequencies of the first and second types of 
longitudinal waves (forward and backward) take the form 

~l = + ( ( r ,  + (r~ - 4 r o r 2 ) l / 2 ) / ( 2 r o ) )  1/2, = + ( ( r l  - - 4ror Y2)/(2ro)) ' / 2 ,  

and the multiple frequencies of transverse waves (forward and backward) with different polarizations are: 

~3 = ,J4 = + ( G / p ~ ) l l ~ l k [ ,  

where psa = amp~ + (1 - m)ps. Consider now the case of a resonance triad. Let w(U = w3 be the transverse- 
wave frequency; w (2) = w2 the frequency of the second type of longitudinal wave, and w(3) = wl the frequency 
of the first type of transverse wave. We determine the vectors. Let A(i) be eigenvectors of the matrix of the 
background stress state tensor, i.e.: 

~}~ = A(J)A (j), IA(J) I -- 1, j = 1,2,3 

(~(J) are eigenvalues). We assume that 

k (1) = nlA (1) rl k (2) = n2A (2) 

(nl and n2 are integers). Hence, due to (3.1): 

k (3) = nlA (1) + n2A (2). 

In this case, condition (3.1) is of the form 

(G/Pso,) 1/2 -4- Z((cl + zelA (2) - ((Cl -}- ael~(2))  2 - 4Fo(c2 + ze2A(2)))l/2)/(2Fo))U2 

= ((c1(1 + Z 2) + zex(A (1) + Z2A (2)) + ((c1(1 + Z 2) + ael(A (I) + Z2A(2))) 2 

- 4F0(1 + Z2)(c2(1 + Z 2) + ~ ( 1  (~) + Z2X(2))))W2)/(2Fo))W2, (4.1) 

where Z = n2/n I. 
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TABLE 1 

I II(1), •  II(2) _1_(2) 

TABLE 2 

I 
I (2) 
II I(3), • (3) 
• 1(1) 

[ ~  II 
II(1) 
(3), I(1) 
Ii(a) 

.1_ 
.1_(4) 
• (1) 

If Eq. (4.1) has a rational root, Z, then the conditions for triple-wave resonance are fulfilled, i.e., 
transverse and second-type longitudinal waves can take part in resonance interaction which results in the 
first-type longitudinal wave. If the root of Eq. (4.1) is not a rational number, this can be achieved by varying 
the problem's parameters. Similarly, all possible variants of the spatial interaction between elastic waves can 
be analyzed. 

The possibility of realization of the above regimes of wave interaction was confirmed by analyzing 
all characteristic parameters. Below, interactions will be considered in which two initial waves propagate in 
orthogonal directions k(j) determined by the eigenvectors A (j) of the background-stress-state tensor. 

The results of numerical calculations for [k(1)[ = [k(2)[ = 1 are listed in Table 1 (for a liquid-saturated 
porous medium) and in Table 2 (for a gas-saturated porous medium). In this case, I, II, and • denote 
first- and second-type longitudinal waves and transverse waves, respectively. The intersection of lines and 
columns shows which of the waves results from the resonance interaction between the first (vertically) and 
second (horizontally) initial waves. The numbers in brackets denote the variants realized. A dash in the Table 
corresponds to the interaction between two transverse waves when the necessary conditions for the triple-wave 
resonance are not satisfied (3.1). 

The qualitative differences in the wave resonance interactions for saturation of a porous medium with 
either a liquid or a gas are quite obvious. Thus, the interaction between two first-type longitudinal waves in a 
liquid-saturated porous medium can give rise to transverse and second-type longitudinal waves, and in a gas- 
saturated porous medium this can result only in a transverse wave. The interaction between two second-type 
longitudinal waves in a liquid-saturated porous medium generates a transverse wave, and such intersection in 
a gas-saturated porous medium gives transverse and first-type longitudinal waves. As follows from Tables 1 
and 2, the energy distributions in a system of interacting waves in liquid- and gas-saturated porous media are 
different in almost all cases. Only in the interaction between transverse and first-type longitudinal waves does 
three-train resonance occur in a similar way, i.e., new first-type longitudinal wave is generated that "takes" 
energy from the initial waves. The total system energy remains constant. 

Of particular interest are interaction conditions that cause explosive instability and, as a result, the 
decay of waves. In this case, wave propagation in a gas-saturated medium is less stable than in a medium 
saturated with incompressible liquid, e.g., water. In a gas-saturated medium the effect of explosive instability 
can be realized for almost all wave types. This is in fair agreement with the universally accepted concepts on 
strong wave decay in gas-saturated layers. 

Note that the interaction constants depend on the parameters, particularly on the wave vectors, and 
vary with them (to the point of sign change), so that the type of wave resonance interaction can also change. 

The work was supported by the International Scientific Foundation (grant JET100). 
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